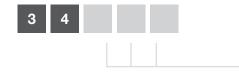


Mixer B-400 Technical data sheet

The BUCHI mixer B-400 is designed for efficient homogenization of a wide range of food and feed samples. The achieved homogeneous analytical fineness is key for the quality of the subsequent analytical procedures.


Scope of delivery

All B-400 models are delivered ready to use and are complete of:

Components	Version with steel knives	Version with ceramic knives
Sample beaker	1	1
Tool for cutter	1	1
Stainless steel knives	1	
Ceramic knives		1
Polypropylene membrane	1	1

Order code

Choose the configuration according to your needs:

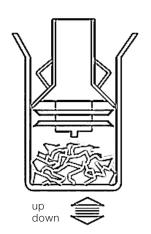
Mixer B-400, type of knives

Stainless stell knives, supply voltage 220 – 240V / 50 Hz
Stainless stell knives, supply voltage 220 – 240V / 60 Hz
Ceramic knives, supply voltage 220 – 240V / 50 Hz
Ceramic knives, supply voltage 220 – 240V / 60 Hz

Technical data

Dimensions (WxDxH)	300 x 510 x 530 mm	
Weight	26 kg	
Operating voltage	220 – 240 ±10 % V	
Frequency (2 variants)	50 or 60 Hz	
Power consumption	max. 2100 W	
Current consumption	approx. 10 A	
Speed of rotation of knife	approx. 9000 rpm	
Testing data	IEC 1010-1/EN 61010-1 (VDE 0411-1)	

Accessories


Parts	Order number	Picture	
Membrane, polypropylene (PP)	026900	1	
Autoclavable membrane, polyvinylidene fluoride (PVDF)	036912	1	2
Disc, titanium	026471	2	3
Cutting blade at the top, stainless steel (~800 Vickers)	036913	3	4
Cutting blade at the top, ceramic (~1750 Vickers)	036915	3	5
Cutting blade at the bottom, stainless steel (~800 Vickers)	036914	5	6
Cutting blade at the bottom, ceramic (~1750 Vickers)	036916	5	
Distance piece, polyether ether ketone (PEEK)	026909	4	7
Knife screw, titanium	034376	6	
Tool for cutter	034225	7	8
Sample vessel	026441	9	
Cutting blade set, stainless steel	034339		
Cutting blade set, ceramic	034340		9)
Guard door	034374	8	

Functional principle

The process is based on simultaneous grinding and homogenization of sample materials by means of volumetric reduction using two rotating blades in a beaker. Automatic electronic monitoring of the speed and the torque allows safe and straightforward operation of the grinding process.

Starting point: Sample material is placed into the beaker, beaker goes in position, safety door is closed.

- · Beaker moves up to the knives
- · As soon as the knife assembly is inside the beaker, it begins to spin
- \cdot When maximum speed is reached, the beaker moves further up to the blades
- The driving speed is automatically adjusted by means of the membrane counterpressure
- \cdot The sample is grinded and homogenized
- · When finished, the beaker moves down far enough for the knives to coast to a stop while still being inside the beaker
- · The beaker moves further down to the strating point

