

Extraction of micropollutants from contamined sediments after heavy rain events

Lyovapor™ L-200Pro, SpeedExtractor E-916, Multivapor™ P-6: Pressurized solvent extraction (PSE) of contamined sediments as a critical part of aquatic risk accessment

1. Introduction

Although sediment-bound pollutants have previously been considered to be trapped within the sediment matrix, it has been shown that extreme weather events can cause remobilization and large-scale distribution of such pollutants [1]. With the increasing occurrence of extreme weather events, including sediment investigations in aquatic risk assessments is more important than ever. Investigation of these matrices, therefore, requires solubilization of the particle-bound pollutants [2]. Since sediments contain a complex mixture of polar and non-polar substances from a multitude of different chemical classes (e.g., PAHs, PCBs, PFAS), selecting the extraction solvent should always be tailored toward the research question in mind.

2. Experimental

Sample:

Three sediment samples from flooded areas flooded during the 2021 European heavy rain event.

Equipment and procedure:

Freeze drying of the sediment samples using the Lyovapor[™] L-200 Pro Pressurized Solvent Extraction (PSE) using the SpeedExtractor E-916 with 40 mL extraction cells Parallel evaporation for solvent exchange using the Multivapor[™] P-6 with Vacuum Pump V-300, Interface I-300Pro and Recirculating Chiller F-308

Table 1: Parameters for Pressurized Solvent Extraction using the SpeedExtractor E-916.

Parameter	Value	
Temperature	100 °C	
Pressure	120 bar	
Solvent	50 % Acetone / 50 % n-Hexane	
Cycles	2	
Heat up	1 min / 1 min	
Hold	10 min / 10 min	
Discharge	3 min / 3 min	
Flush with solvent / gas	2 min / 3 min	

Figure 1:SpeedExtractor E-916 and Lyovapor L-200Pro.

3. Results

Table 2 shows a selection of results for the determination of PAHs in three different sediment samples. For more results please refer to the Application Note No. 822/2023.

Table 2: Selection of results for the determination of PAHs using the SpeedExtractor E-916.

PAH	Location 1 (mg/kg)	Location 2 (mg/kg)	Location 3 (mg/kg)
Naphthalene	0.290	0.340	26.840
2-Methylnaphthalene	0.290	0.280	7.890
Acenaphthylene	0.090	0.280	47.370
Fluorene	0.040	0.040	56.840
1-Methylfluorene	0.030	0.010	5.680
Phenanthrene	0.260	0.270	217.890

4. Conclusion

This Application Note demonstrates the workflow for the determination of pollutants in river sediment samples by freeze-drying the sample, pressurized solvent extraction, and evaporation of the extract prior to analysis. The presented procedure for extracting sediment samples using the SpeedExtractor E-916 is a fast and reliable method for determining pollutants.

5. Acknowledgments

We greatly acknowledge Mr. Marc Wollenweber, Dr. Sabrina Schiwy, and Prof. Dr. Henner Hollert, Goethe University Frankfurt for their support in the development of this Application Note.

6. References

Application Note No. 822/2023: Extraction of micropollutants from contamined sediments after heavy rain events [1] Crawford, S.E., et. A., 2022. Remobilization of pollutants during extreme flood events poses severe risks to human and environmental health. Journal of Hazardous Materials 421, 126691. <u>https://doi.org/10.1016/j.jhazmat.2021.126691</u> [2] Wollenweber, M. Standard Operating Protocol, Goethe University Frankfurt, Version 20210708 For more detailed information and safety considerations please refer to the Application Note No. 822/2023.